FACILE ALKYLATION OF o-HYDROXYARYLALDEHYDES AND a-FORMYLKETONES WITH TRIALKYLBORANES

Keiji Okada, Yasushi Hosoda, and Masaji Oda* Department of Chemistry, Faculty of Science, Osaka University Toyonaka, Osaka 560, Japan

Summary: Trialkylboranes readily undergo alkylation reactions with o-hydroxyarylaldehydes and a-formylketones via the dialkylboryl complexes.

Although the conjugate addition of trialkylboranes to a,B-unsaturated carbonyl compounds is well known, 1,2-addition to simple carbonyl groups has seldom been observed.' Monomeric formaldehyde undergoes exceptionally fast alkylation with trialkylboranes in the presence of oxygen.² The reaction is diverted to the reduction of formaldehyde under inert atmosphere.² **Reactions of nonenolizable aldehydes or ketones with trialkylboranes generally require forced** conditions, $3\overline{})$ giving reduced alcohols and alkenes. $4,5\overline{})$ For example, the reaction of benzaldehyde **with tri-n-butylborane gives the reduced dibutylbenzyloxyborane and butene at lOO-150°C (eq 1).**

During photochemical studies of dialkylborylacetylacetonate chelate-complex (eq 2),6 we have found that some chelates derived from o-hydroxyarylaldehyde or α -formylketones are un**stable and thermally undergo alkylation reactions.**

When tricyclohexylborane (2a: 1.1~1.5 equivalent) is mixed with salicylaldehyde (1) in benzene at room temperature, red color due to the dialkylboryl complex (3a) is developed and **fades away upon heating. After evaporation of the solvent and distillation of the residual** oil, the borane compound (4a) was obtained in high yield as colorless oil [4a M⁺ (m/e) 298; ¹H NMR δ (ppm) in CDC1₃, 0.8-2.1 (m, 22H), 4.89 (d, 1H, J=2.0 Hz), 6.8-7.3 (m, 4H)]. Oxidative hydrolysis of 4a gave 5a in 83% yield.⁷ Table 1 summarizes the results of alkylation reaction

 $\frac{8}{3}$ of salicylaldehyde and 1-formy1-2-naphthol with several trialkylboranes (2a_{-C}). Relatively

bulky norbornyl group can be introduced by this procedure.⁸ o-Hydroxyacetophenone is inert for the alkylation and gives only the reduced product (β), suggesting that formyl group is **essential for the alkyl migration. Phenolic hydroxyl group is also necessary for the alkyl**ation as shown in the complete recovery of σ -methoxybenzaldehyde. The initial participation of **the borane complex is evidenced by the visible absorption (449 nm in benzene). The value is** close to that of stable diphenyl analogue⁹ (3; R=Ph 424 nm in Bz).

Although the reaction proceeds under nitrogen atmosphere, addition of a small amount of galvinoxyl radical (5 molX) depressed the yield to 46% and 22% for tricyclohexyl- and tri-nbutylboranes, respectively. lc,lO This result suggests participation of radical species either in the initial complexation or the subsequent alkyldtion processes (see eq 3). The alkyl migration may occur via a radical pair mechanism as proposed in our previous study of photochemical alkylation of the related systems. 6

The facility of the alkylation reaction can be demonstrated by the competition with the reduction by use of dialkylhydroborane, typical reducing agent of the carbonyl groups. Thus, the reaction of salicylaldehyde with diisopinocampheylborane (9; 0.5 equivalent) at 50°C qave the expected reduced salicyl alcohol (10) and the alkylation product (11) in 46% and 16% yields based on 9, respectively (eq 4). NMR and HPLC analysis of 11 showed that the alkylation was **noniiasterecselective and 11 was obtained as an essentially equimolar diastereomeric mixture. 11**

We have also found that similar alkylation proceeds in the reaction of trialkylboranes with a-formylketones. Since the reaction of *ß-diketones with trialkylboranes has been exten***sively studied and is already known to give the stable dialkylboryl complexes, 12 it is rather** surprising that the reaction of α -formylketones gives alkylation-product. As shown in eq (5) and (6), the reactions of α -formylcamphore (12) or α -formylcyclohexanone (14) readily afford **the alkylation products after acidic hydrolysis. ¹³**

The reaction is highly regiospecific and the alkylation occurs only on the aldehyde carbon (eq 5 and 6). This selectivity is probably due to steric effect in the alkylmigration step in the radical pair intermediate.⁶ Initial coloring after mixing a-formylketones with trialkyl**boranes suggests the intermediacy of the chelate-complexes (370 and 375 nm in benzene, for l2_ and l& respectively). Assignment of the absorption can be supported by the analogy with the** thermally stable dicyclohexylborylacetylacetonate complex^{6,12a,b} (348 nm in benzene).

In eq (5), low reactivity of a-formylcamphore toward tri-n-butylborane can be noticed (JJJb, 10% with recovery of 71% of jJ). It is expected from our previous study6 that the alkylation may be performed by photochemical processes. Thus, selective excitation (> 330 nm) of the chelated intermediate (λ_{max} 370 nm), produced *in situ* from 12 and 2b, in benzene at

room temperature under nitrogen atmosphere gave 13b in the improved yield of 40%.¹⁴ **Obviously the reaction is accelerated by irradiation. In other cases, however, the role of photo-acceleration is not clear because of the relatively facile thermal alkylation process even at room temperature. Further investigations in this and related systems are in progress in this laboratory.**

References and Notes

- **1 (a) A. Suzuki, A. Arase, H. Matsumoto, M. Ito, H.C. Brown, M.M. Rogic, and M.W. Rathke, J.** Am. Chem. Soc., 89, 5708 (1967); (b) H.C. Brown, M.M. Rogic, M.W. Rathke, and G.W. Kabalka, **Ibid .,a 5709 (1967), 90, 4165, 4166 (1968); (c) G.W. Kabalka, H.C. Brown, A. Suzuki, S. Honma, A. Arase, and M. Ito, Ibid ., 92, 710 (1970); (d) H.C. Brown and G.W. Kabalka, Ibid., 92, 712, 714 (1970).**
- **2 N. Miyaura, M. Ito, A. Suzuki, H.C. Brown, M.M. Midland, and P. Jacob, III, J.** Am. **Chem.** Soc., 94, 6549 (1972).
- **3 Enolysis may occur in the reaction of enolizable aldehydes or ketones in competition with the reduction; see W. Fenzl and R. Koster, Angew. Chem., Int. Ed. Engl., 10. 750 (1971).**
- **4 B.M. Mikhailov, V.G. Kiselv, and Yu. N. Bubnov, Izv. Akad. Nauk SSSR, Ser. Khim. 1965, 898. C.A.63, 5535b (1965).**
- 5 Alkylation has been observed as a minor path when the reaction is subjected to much severe **conditions (~300°C in the presence of hydroquinone); see T. Kubo and A. Nose, Yakugaku** Zashi, 95, 1411 (1975). C.A. 84, 90200 (1976).
- **6 K. Okada, Y. Hosoda, and M. Oda, J. Am. Chem. SOC.,~ 321 (1986).**
- **7 Simple hydrolysis with water is rather ineffective. The method of oxidative cleavage of B-C bond facilitates the hydrolysis.**
- 8 5c and *I*c were obtained as diastereomeric mixtures (1:1 by NMR); HPLC analysis of the mixture showed only a single peak (LiChrosorb SI 100, eluted with C_fH_{1d} : EtOAc (10:1)). **Owing to difficulty of the separation of the diastereoisomers, stereochemical assignment** including exo- and endo-stereochemistries could not be determined.
- **9 F. Umland and C. Schleyerbach, Angew. Chem., Int. Ed. Engl.,4_, 432 (1986).**
- 10 A. Bamford, M.D. Cook, and B.P. Roberts, Tetrahedron Lett., 24, 3779 (1983).
- 11 Interestingly, NMR spectrum of the diastereomeric mixture of 11 reveals that phenolic OH **protons of the diastereomers appear in considerably different chemical shifts (7.89 and** 8.04 ppm CDC1₂).
- 12 (a) M.F. Hawthorne and M. Reintjes, J. Am. Chem. Soc., 86, 5016 (1964); (b) M.F. Hawthorne **and M. Reintjes, J. Org. Chem ., 30, 3851 (1965); (c) K. Utimoto, T. Tanaka, and H. Nozaki,** Tetrahedron Lett., 1972, 1167; (d) H. Roth and B. Miller, Arch. Pharm. (Weinheim, Ger.) 297, 617 (1965); (e) A.T. Balaban, C.N. Rentea, M. Mocanu-Paraschiv, and E. Romas., Rev. **Roum. Chim.,** lo, 849 **(1965); (f) A.T. Balaban, C.N. Rentea, and M. Bacescu-Roman, Ibid., lo, 865 (1965); (g) L.H. Toporcer, R.E. Dessy, and S.I.E. Green, Inorg. Chem.& 1649** (1965); (h) R. Koster and G.W. Rotermund, Libigs Ann. Chem., 689, 40 (1965); (i) F. Umland, E. Hohaus, and K. Brodte, Chem. Ber., 106, 2427 (1973).
- 13 **Trans isomers are overwhelmingly formed.**
- **14 Externally irradiated for 50 min with a 500-W Xenon lamp through a Toshibd UV-33 filter** $([22]=7.1x10^{-2}M, [2b]=1.1x10^{-1}M)$. No recovery of the starting material was observed.

(Received in Japan 31 July 1986)

6216